
	UP FS
	Course description
	Page: 1/2

	1. Course title: Compilers and assemblers

	

	2. Code:
	3. Type (lecture, practice etc.): practice

	

	4. Contact hours: 2 hours per week
	5. Number of credits (ECTS): 2

	

	6. Preliminary conditions (max. 3):
·
·
·

	

	[bookmark: __Fieldmark__45_1016521800][bookmark: __Fieldmark__46_1016521800][bookmark: __Fieldmark__47_1016521800]7. Announced: |_|fall semester, |_|spring semester, |_|both

	

	8. Limit for participants: 48

	

	10. Responsible teacher (faculty, institute and department):
Gimesi László PhD (Faculty of Science, Institute of Mathematics and Informatics)

	

	11. Teacher(s) and percentage:
	Makkai Géza PhD
	100 %

	
	
	

	
	
	

	
	
	

	
	
	

	

	12. Language: English

	

	13. Course objectives and/or learning outcomes:
[bookmark: _GoBack]Students are introduced to the operation of compilers, different analytical methods. They will have knowledge of low-level programming of processors and microcontrollers. They will know the basics of Assembly programming language, and will be familiar with elementary (binary) algorithms.

	

	14. Course outline
Week 1 Annunciation of course requirements. Binary arithmetic, number representation. Memory addressing, segment and offset addressing. Processor types, registers, register operations. Structure of Assembly programs.
Week 2 Assembly programming environment. Addressing methods: direct, register, memory, indirect etc. Instruction set: data moving, arithmetic, logic, jump etc.
Week 3 Managing interrupts, subroutine call. Writing characters and strings to console, using keyboard.
Week 4 Examples for using keyboard and console. INT 21h interrupt.
Week 5 Theoretical summary of formal languages and automats, connection between automats and compilers. Summary of programming languages. Introduction to operation of compilers.
Week 6 Declaring data types, variables, constants, and labels. Memory allocation (DATA and DATA?). Examples for using data segments.
Week 7 Structure of compilers. Lexical, syntactic, and semantic analysis.
Week 8 Error handling, code generating, code optimization.
Week 9 Examples: analysis of code of high level language programs.
Week 10 Embedded screen-memory management.
Week 11 Mass storage management, writing its content to console.
Week 12 Connection of Assembly to other programming languages. Compiling directives.
Week 13 Summary, evaluation of course fulfilment.

	

	15. Mid-semester works
Week 5 Test.
Week 9 Test.
Week 13 Assessment: individual software development.

	

	16. Course requirements and grading
· 2 tests: 50%,
· 2 home works: 50%.

	

	17. List of readings
[1] Torben Ægidius Mogensen: Basics of Compiler Design, University Of Copenhagen, 2010.
[2] Peter Norton and John Socha: Assembly language for the PC Prentice Hall Press, 1986.
[3] Published tasks in Neptun Meet Street

	

	18. Recommended texts, further readings
[1] Grune, D., van Reeuwijk, K., Bal, H.E., Jacobs, C.J.H., Langendoen, K.: Modern Compiler Design, Springer, 2012.
[2] Microsoft MASM Programmers’s Guide.

	

	Date
	24 April, 2017
	Prepared by
	

	
	
	
	Dr. Gimesi László
Responsible teacher

	

	Endorsed by
	

	
	Dr. Koniorczyk Mátyás
program supervisor

