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ABSTRACT: The Parâng and the Făgăraş mountains are the highest mountain 
ranges of the South Carpathians. Many alpine lakes are located in the valleys 
among the hills. The non-biting midge (Diptera, Chironomidae) fauna of the 
lakes are poorly known and only sporadic information is available about the 
environmental parameters that influence their distribution. Our aim was to study 
the recent chironomid fauna of fifteen lakes (nine from Parâng and six from 
Făgăraş) and assess the environmental factors influencing the distribution of 
the assemblages. Water and surface sediment samples were collected in the 
summer of 2012 and 2013. The surface sediment samples were obtained from 
the deepest part of the lakes. Two cubic centimeters of sediment samples were 
processed to get the chironomid head capsules. The examined sediments 
contained 13 to 81 well-preserved head capsules. The most remains and taxa 
were found in lakes of the Parâng, tribe Tanytarsini, genus Procladius and 
Psectrocladius sordidellus-type were common in these lakes. Chironomid fauna 
of the Făgăraş was poor in remains, among them taxa of tribe Tanytarsini and 
genus Pseudodiamesa were specific for these lakes. According to the results of 
the multivariate statistical analysis (CCA, LDA), composition of the chironomid 
assemblages were different in the two mountains. Distribution of the chironomid 
assemblages was defined significantly by the maximum water depth and 
iron(III)-oxide concentration of the sediment of the lakes. 
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KIVONAT: A Déli-Kárpátok legmagasabb hegységei a Parâng és a Făgăraş. 
Sok gleccsertó található a hegycsúcsok által körbezárt völgyekben. A terület 
árvaszúnyog (Diptera, Chironomidae) faunájáról és az együttesek összetételét 
meghatározó környezeti paraméterekről kevés ismerettel rendelkezünk. Jelen 
tanulmányban célunk volt 15 magashegyi tó (9 tó a Parâng- és 6 tó a Făgăraş-
hegységekből) recens árvaszúnyog faunájának vizsgálata és az együttesek 
eloszlását meghatározó környezeti tényezők feltárása. A víz- és üledékminták 
vételére 2012 és 2013 nyarán került sor. A felszíni üledékmintákat a tavak 
legmélyebb pontjáról gyűjtöttük be. Két köbcentiméternyi üledékminták kerültek 
feldolgozásra, melyekből 13–81 árvaszúnyog fejkapszula került elő. A legtöbb 
maradvány és taxon a Parâng-hegység tavaiból került elő. A Făgăraş-
hegységben található tavak maradványokban szegénynek bizonyultak, itt főleg 
a Tanytarsini tribusz és a Pseudodiamesa génusz képviselői fordultak elő. A 
statisztikai elemzések (CCA, LDA) alapján az árvaszúnyog-együttesek 
összetétele különbözött a két hegységben. A tavak vízmélysége és az üledék 
vas(III)-oxid tartalma volt szignifikáns hatással az árvaszúnyog-együttesek 
eloszlására. 
 
Kulcsszavak: árvaszúnyog, szubfosszilis maradványok, Déli-Kárpátok, felszíni 
üledék, CCA 

 
 
 
 
Introduction 
 

Among macroinvertebrates, the larval remains of the family Chironomidae 
(Diptera) are most abundant in lake sediments because the chitinous head capsules 
are normally well preserved, and thus have proven to be especially useful in 
paleoenvironmental studies (WALKER 2001). Chironomid (non-biting midge) larvae 
can be found in a wide range of biotopes, and play an important role in life of lakes 
due to the large number of species and specimens (ARMITAGE et al. 1995).  

The South Carpathians consist of three main mountain ranges: Retezat, 
Parâng and Făgăraş mountains. Although many paleoecological investigations were 
carried out in the area of Retezat (BRAUN et al. 2012, BUCZKÓ et al. 2012, 2013., 
KORPONAI et al. 2011, MAGYARI et al. 2012, 2013, TÓTH et al. 2012), midge fauna 
and environment of Parâng and Făgăraş mountains are poorly known. The Parâng 
and the Făgăraş mountains are the highest mountain ranges of the South 
Carpathians. Many alpine lakes are located in the valleys among the hills. 
Approaching these lakes is difficult, so this area is impacted by a negligible 
anthropogenic disturbance, although the sheep grazing is common near a few lakes. 
The intensive grazing may also cause the disappearance of some rare alpine 
species (BAUR et al. 2007). 

Aim of our study was to explore the distribution of the recent chironomid fauna 
of fifteen lakes and assess the environmental factors influencing the distribution of 
the chironomid assemblages. 
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Materials and methods 
 

Water and surface sediment samples were collected in the summer of 2012 
and 2013 at 15 sites (Figure 1, Table 1) in the Parâng and the Făgăraş mountains. 
The surface sediment samples were obtained from the deepest part of the lakes 
using gravity corer. Surface samples were sliced off to get the undisturbed top layer 
of 0-2cm. The surface sediment samples (topmost 0-2 cm) represent the current 
fauna (e. g. BROOK and BIRKS 2004), so characterizing the recent conditions. Water 
samples were obtained from the lake surface. The samples were stored cool until 
processing 

A wide range of chemical and physical variables were measured in the field 
(using by Hand-held Water Quality Meter WQC-24) and in the laboratory (Table 2). 
 

 
Figure 1. Sampling sites in the Parâng and the Făgăraş mountains (for codes 
see Table 1). 

 
Table 1. Sampling sites in the Parâng and the Făgăraş mountains with the 
sampling dates, geo-coordinates and altitude. 

Code Sampling sites Date Latitude (N) Longitude (E) Altitude 
(m) 

1 Avrig (Făgăraş) 07.08.12 45°34'42,92" 24°28'54,40" 2007 
2 Bâlea (Făgăraş) 08.08.12 45°36'12,22" 24°36'59,94" 2038 
3 Căltun (Făgăraş) 11.08.12 45°34'54,36" 24°34'21,84" 2135 
4 Capra (Făgăraş) 10.08.12 45°36'02,76" 24°37'38,22" 2249 
5 Doamnei (Făgăraş) 09.08.12 45°36'18,66" 24°36'00,72" 1890 
6 Valea Rea (Făgăraş) 13.07.13 45°35'59,60" 24°44'37,60" 2160 
7 Câlcescu (Parâng) 14.08.12 45°21'01,50" 23°36'44,04" 1934 
8 Cărbunele (Parâng) 13.08.12 45°21'29,40" 23°38'18,60" 2054 
9 Cârja (Parâng) 17.08.12 45°21'49,79" 23°31'51,13" 2129 
10 Mândra (Parâng) 15.08.12 45°20'31,98" 23°32'51,12" 2140 
11 Mija (Parâng) 16.08.12 45°22'32,28" 23°31'33,54" 1988 
12 Rosiile (Parâng) 15.08.12 45°20'41,28" 23°33'15,84" 1978 
13 Verde (Parâng) 18.08.12 45°21'36,54" 23°32'18,78" 2030 
14 Zănoaga Mare (Parâng) 14.08.12 45°21'15,24" 23°35'55,38" 2018 
15 Zănoaga Stanei (Parâng) 15.08.12 45°21'04,68" 23°33'01,26" 1909 
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Sediment samples of two cubic centimeters were processed to get the 

chironomid head capsules. The standard preparation technique (e.g. BROOKS 1997, 
WALKER 2001, 2006) begins with the deflocculating the sample in 10% potassium 
hydroxide (KOH) on a hot plate at 80 °C for 15–20 minutes. The deflocculated 
sample is then washed with destilled water on a 92 µm sieve to eliminate clay and 
other fine sediment components. Eventually the chironomid remains must be hand-
picked from the sediment in a Bogorov counting tray (GANNON 1971) at 30× 
magnification. The picked head capsules should be dehydrated in absolute ethanol 
before preparating onto microscope slides by using Euparal®. Remains were 
identified using the keys by BROOKS et al. (2007) and WIEDERHOLM (1983). As only 
chironomid head capsules were examined, identification to genus and species-group 
level was possible. 

The assemblage dataset was log10(x+1) transformed before the analyses. The 
environmental variables were log10(x) transformed exepting LOI%, which was 
arcsin(x/100) transformed. Detrended correspondence analysis (DCA) was used to 
explore patterns in distribution of the taxa within spatial dimension and to choose 
between linear- or unimodal-based methods in further numerical analyses by 
estimating the lenghts of compositional gradients (DCA axes 1 and 2). DCA is an 
indirect ordination method that summarizes the variation in species assemblages 
along the DCA axes (TER BRAAK and ŠMILAUER 2002). The lengths of compositional 
gradients were long: 4.151 standard deviation (SD) units for axes 1, 1.8–2.3 SD 
units for axes 2–4, so the unimodal-based method (CCA) was applied in further 
analyses (JONGMAN et al. 1995, LEPŠ and ŠMILAUER 2003). Canonical 
correspondence analysis (CCA) was used to explore the relationship between 
chironomid assemblages and environmental variables. CCA is a direct gradient 
procedure that can be used to identify environmental variables that are strongly 
related to the species assemblages (TER BRAAK 2003). Rare taxa were down-
weighted in the analysis. The statistical significance of each variable was tested with 
a random Monte Carlo permutation test (499 unrestricted permutations), and 
environmental variables were considered significant if the permutation test value (p) 
was under 0.05. The statistical analysis (DCA, CCA) were performed using the 
program CANOCO 4.55 (TER BRAAK and ŠMILAUER 2002). Finally, linear discriminant 
analysis (LDA) was carried out to classify the lakes of the two mountain ranges. LDA 
is a method to find a linear combination of features characterizing or separating two 
or more classes, which provide the best discrimination between the groups (PODANI 
1997). Two sample t-tests and ANOVA were carried out to examine significance of 
the separated groups. LDA, t-tests and ANOVA were performed using ‘R 2.14.0’ 
software (R DEVELOPMENT CORE TEAM 2011). 
 

Table 2. Parameters measured in the field and laboratory. 

Properties Specific variables 

Water chemistry 
Major anions and cations: Na+, K+, Ca2+, Mg2+, Cl-, SO4

2- 

CO3
2-, HCO3

- , total phosphorus and nitrogen (TP, TN), 
pH, alkalinity and conductivity 

Water properties Water transparency (Secchi depth), chlorophyll-a, 
dissolved oxygen (DO), water temperature 

Physical properties Water depth, longitude, latitude, altitude 
Sedimentary properties Loss on ignition (LOI), sediment chemistry 
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Results and discussion 
 

Altogether 583 chironomid remains were identified from the sediment samples 
(Table 3) belonging to 30 taxa (3 Tanypodinae, 3 Diamesinae, 1 Prodiamesinae, 14 
Orthocladiinae, 9 Chironominae). Numbers of head capsules in an unit sediment 
were very low in lakes of Făgăraş, with exception of Lake Doamnei. Tribe 
Tanytarsini and genus Pseudodiamesa were specific for these lakes (Table 3). The 
remarkable number of chironomids in Lake Doamnei could be due to altitude of the 
lake. All other lakes in Făgăraş are situated above 2000 m, while Lake Doamnei is 
located 1890 m above sea level. Inverse relationship was found between altitude 
and nutrient content (especially in cases of TP and TN) in the Swiss Alps (MÜLLER et 
al 1998), so higher chironomid abundance could be explained by more sources of 
nutrients. The most remains and taxa were found in lakes of the Parâng, tribe 
Tanytarsini, genus Procladius and Psectrocladius sordidellus-type were common in 
these lakes (Table 3). Chironomus anthracinus-type, a common taxon in eutrophic 
lakes (BROOKS et al. 2007), occurred in Lake Carbunele. The presence of this taxon 
in an alpine lake might be caused by the disturbing effect of sheep grazing. 

According to forward selection of CCA analysis, two of the 25 environmental 
variables proved to be significant (p < 0.05) for the distribution of non-biting midge 
assemblages in the Parâng and the Făgăraş mountains (Figure 2). The iron(III)-
oxide concentration of the sediment (p = 0.002) and the water depth (p = 0.026) of 
the lakes caused differences between lakes of the Parâng and the Făgăraş 
mountains. Pseudodiamesa, Heleniella, Corynocera oliveri-type, Paratanytarsus 
austriacus-type were common in lakes of the Făgăraş mountains. Remains of these 
taxa amounted to 47.6% of the total number of individuals (147) in the lakes of the 
mountains. On the contrary, frequent occurrence of Procladius, Micropsectra 
insignilobus-type and Psectrocladius sordidellus-type was typical in lakes of the 
Parâng mountains. These remains amounted to 39.0% of the total number (436) in 
the lakes of the Parâng mountains. Large number of occurrence of Micropsectra 
radialis-type and Tanytarsus lugens-type was characteristic for both mountains (42% 
of the total number of remains of the two mountains). Heterotrissocladius grimshawi-
type, Micropsectra insignilobus-type and Procladius genus characterized the deeper 
lakes in the Southern Carpathians. 

Taxonomic and environmental separations of the two mountains were 
confirmed by linear discriminant analysis (Figure 3). Two sample t-tests showed that 
significant differences occur between lakes of the mountains in case of chironomid 
assemblages (df = 6.155, t = -11.598, p < 0.001) and also in environmental variables 
dataset (df = 8.141, t = -9.654, p < 0.001). The group separations were tested by 
ANOVA, which resulted in the homogeneity of covariance matrices of chironomids 
and environmental variables. 

Our results might be explained by mountains of Southern Carpathians 
structure: Făgăraş mountains consist of strongly metamorphosed rocks, crystalline 
slates, conglomerate, dolomite and limestone, while granite and migmatit is the 
basis of Parâng mountains (SĂNDULESCU and DIMITRESCU 2004). Type of the 
bedrock can influence water and sediment chemistry variables, which can affect the 
composition of chironomid assemblages (LENCIONI and ROSSARO 2005, LENCIONI et 
al. 2011, SZIVÁK et al. 2013). 

Depth of the lakes is an important factor, having influence on the distribution 
and abundance of chironomid taxa. Moreover, most chironomid species show 
preference for water depth (e. g. HEIRI 2004, LUOTO 2012a, 2012b). The non-biting 
midge assemblages of South Carpathians consisted of mostly cold stenothermic 
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taxa often occurring in high densities (e.g. Tanytarsus lugens-type, Micropsectra 
insignilobus-type, M. radialis-type) (Brooks et al. 2007). This alpine community is 
very sensible to temperature change, thus the global warming will be able to lead to 
extinction of these cold stenotherm taxa (OERTLI et al. 2008). 

In summary, differences could be detected in distribution of non-biting midge 
assemblages and environment factors between lakes of the two highest mountain of 
Southern Carpathians. The assemblages of the lakes were separated according to 
their iron(III)-oxid content of sediment and maximum water depth of the lakes.  
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Figure 2. Canonical correspondence analysis (CCA) of chironomid taxa, 
sampling sites and environmental parameters in the Parâng and the Făgăraş 
mountains. Different symbols indicate the sampling sites and the taxa: ○ – 
sampling sites of the Făgăraş mountains, □ – sampling sites of the Parâng 
mountains, ▲ – taxa. Environmental parameter codes: Fe2O3 – iron(III)-oxide 
concentration, depth – maximum water depth of the lake. For sampling sites 
codes see Table 1, for taxa codes see Table 3. 
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Figure 3. Linear discriminant analysis (LDA) of the chironomid assemblages 
(chiro.mvh) and the environmental variables (env.mvh). Boxplots illustrate 
distances to centroids based on Welch two sample t-tests. Different symbols 
indicate the sampling sites and centroids: ○ – sampling sites of the Făgăraş 
mountains, ∆ - sampling sites of the Parâng mountains, ● – centroids. 
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Table 3. List of Chironomidae taxa found in the Parâng and the Făgăraş mountains, with the codes of taxa and number of remains 
(for the codes of sampling sites see Table 1). 

Sampling sites 
Taxa Code 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
∑ 

Tanypodinae 

Macropelopia Macrop     1                         1 

Procladius Procla             3 1   2 6 15     4 31 

Zavrelimyia Zavre             2                 2 

Diamesinae 

Diamesa aberrata-type Dia_abe         2                     2 
Diamesa zernyi/cinerella-type Dia_zer/cin         2   1                 3 

Pseudodiamesa Pseudia 6 1 1 2 3               7     20 
Prodiamesinae 

Prodiamesa Prodia       1                       1 

Orthocladiinae 

Corynoneura arctica-type Cor_arc             1     2       3 1 7 
Corynoneura lobata-type Cor_lob             1                 1 

Cricotopus intersectus-type Cri_int                           1 7 8 
Cricotopus sylvestris-type Cri_syl                             2 2 

Epoicocladius Epoic         2                     2 

Eukiefferiella claripennis-type Euk_cla             3                 3 
Eukiefferiella fittkaui-type Euk_fitt         3   2                 5 

Georthocladius Geor     1                         1 
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Table 2. (continued) 

Sampling sites 
Taxa Code 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
∑ 

Heleniella Hele 4                   9         13 
Heterotrissocladius grimshawi-type Het_gri     6     1                   7 

Limnophyes Limno             1       1         2 

Orthocladius type S Ort_S         8                 1   9 
Psectrocladius sordidellus-type Pse_sor           3 3 1       3   17 32 59 
Tvetenia bavarica-type Tve_bav             1                 1 

Chironominae 

Chironomus anthracinus-type Chi_ant               4               4 
Cladopelma lateralis-type Cla_lat                           7 1 8 

Corynocera oliveri-type Cor_oli 3 5   1 7 7     2             25 
Micropsectra contracta-type Mic_con       3                       3 
Micropsectra insignilobus-type Mic_ins     1       2   2 37 5 26 11     84 

Micropsectra radialis-type Mic_rad 1 2   1 19     17 11 10 1 6   2 1 71 
Paratanytarsus austriacus-type Par_aus 8 4     13 5   1               31 
Tanytarsus glabrescens-type Tan_gla       3                       3 

Tanytarsus lugens-type Tan_lug 2 5 3 2   5 21 24 66 25     2 19   174 
∑ 24 17 13 13 59 21 41 48 81 76 22 50 20 50 48 583 

Number of taxa 6 5 6 7 9 5 12 6 4 5 5 4 3 7 7 30 
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